Polydiscs and Nontangential Limits

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Contractions, Nontangential Limits, and the Index of Invariant Subspaces

Let H be a Hilbert space of analytic functions on the open unit disc D such that the operator Mζ of multiplication with the identity function ζ defines a contraction operator. In terms of the reproducing kernel for H we will characterize the largest set ∆(H) ⊆ ∂D such that for each f, g ∈ H, g 6= 0 the meromorphic function f/g has nontangential limits a.e. on ∆(H). We will see that the question...

متن کامل

Nontangential Limits in P (μ)-spaces and the Index of Invariant Subspaces

Let μ be a finite positive measure on the closed disk D in the complex plane, let 1 ≤ t <∞, and let P t(μ) denote the closure of the analytic polynomials in Lt(μ). We suppose that D is the set of analytic bounded point evaluations for P t(μ), and that P t(μ) contains no nontrivial characteristic functions. It is then known that the restriction of μ to ∂D must be of the form h|dz|. We prove that...

متن کامل

Holomorphic Jackson's theorems in polydiscs

The purpose of this article is to establish Jackson-type inequality in the polydiscs UN of C for holomorphic spaces X, such as Bergman-type spaces, Hardy spaces, polydisc algebra and Lipschitz spaces. Namely, E k(f,X) (−→ 1/k, f,X ) , where E k(f,X) is the deviation of the best approximation of f ∈ X by polynomials of degree at most kj about the jth variable zj with respect to the X-metric and ...

متن کامل

Spectrum of the ∂-neumann Laplacian on Polydiscs

The spectrum of the ∂-Neumann Laplacian on a polydisc in C is explicitly computed. The calculation exhibits that the spectrum consists of eigenvalues, some of which, in particular the smallest ones, are of infinite multiplicity.

متن کامل

Busemann Functions and Julia-wolff-carathéodory Theorem for Polydiscs

The classical Julia-Wolff-Carathéodory Theorem is one of the main tools to study the boundary behavior of holomorphic self-maps of the unit disc of C. In this paper we prove a Julia-Wolff-Carathéodory’s type theorem in the case of the polydisc of Cn. The Busemann functions are used to define a class of “generalized horospheres” for the polydisc and to extend the notion of non-tangential limit. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1992

ISSN: 0002-9939

DOI: 10.2307/2159343